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This is a study of the properties of rational coordinate functions for the purposes
of interpolation and approximation of functions over an arbitrary convex quadri­
lateral in the plane. In particular, we investigate the properties of the space of
all real homogeneous polynomials in the rational coordinate functions. We
show that the class l!in of all real homogeneous polynomials of degree n has the
dimension (n + 1)2 and contains the set of all real polynomials of degree n or
less in the Cartesian coordinates. We construct a monomial basis for ·!iJn , and a
canonical basis for Lagrange interpolation which can be used in finite element
approximations. Finally, we define an approximation procedure in Sobolev
spaces and derive estimates for the norms of the error function.

J. INTRODUCTION

In Refs. [I, 2], Wachspress has developed a method for constructing
rational coordinates over arbitrary convex polygons in the plane. These
rational coordinates are generalizations of the areal coordinates defined
over a triangle. In the present study, we investigate the properties of these
rational coordinates in the case of an arbitrary convex quadrilateral, Q.
In particular, we are interested in their properties for the purposes of
interpolation and approximation of functions.

In Section II, we first recall the definition of the rational coordinates,
{w,: i = 1, 2, 3, 4}, and their properties, as given by Wachspress. We then
prove a new nonlinear relation among the w,'s (Lemma 2(ii)), as well as
a new property of each individual 11', (Lemma 3). Using a more or less
natural coordinate system, we subsequently establish an explicit repre­
sentation for each 11', •

In Section III, we introduce the class of all real homogeneous polynomials
in the rational coordinates on Q. This class is dense in the space of all real
continuous functions on Q. We show that the class B1 n of all real homog­
eneous polynomials of degree n in the variables (11'1.11'2' 11'3,11'4) on Q has
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the dimension (n + 1)2, and that it contains the set flJ n of all real polynomials
of degree n or less in the Cartesian coordinates x and y. In fact, fJd n may be
viewed as the natural generalization to the case of an arbitrary quadrilateral
of, on the one hand, the space of all real homogeneous polynomials of
degree n in the areal coordinates defined over a triangle, and, on the other
hand, the tensor product space of all real polynomials of degree n in the
Cartesian coordinates defined over a rectangle.

In Section IV, we construct a monomial basis for i?lJn , and in Section V
a cardinal basis for Lagrange interpolation, suitable for use in finite element
approximation over a domain which has been partitioned in quadrilaterals
in some arbitrary manner. Finally, in Section VI, we define an approximation
procedure in Sobolev spaces and derive estimates for the norms of the error
function.

II. WACHSPRESS' RATIONAL COORDINATE FUNCTIONS

Consider an arbitrary convex quadrilateral Q in the extended plane. Let
its vertices be labeled PI' P2 , Pa , P4 • For i = 1,2,3,4, let the line con­
taining the segment PiP,+! be given by the linear equation I.+! = O. (Here,
we have adopted the convention that indices on P, I, and later also on w,
shall always be taken modulo 4.) We denote the two external diagonal points
of Q by Sand T, with S = (/2 = 0) n (/4 = 0) and T = (/1 = 0) n (/a = 0).
Let the line containing the segment ST be given by the linear equation m = 0
(see Fig. I).

T

s

FIG. I. A convex quadrilateral (PlP.??) with its external diagonal points Sand T.
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Following Wachspress, we introduce a set of four rational coordinate
functions associated with Q, as follows,

{ 'I 2 3 41. w,'th u' = m(P;) 1'-1/1+2
11',:1=", J' H, I (P)I (P)

'-1 1 ,+2' m

where m(P,), li_iP;), and 1'+2(P,) denote the values of the linear forms m,
1,-1' and 1,+2' respectively, at the point P, . In the case of a rectangle, m = 0
is the equation of the line at infinity, and we take 11', = 1,-11HI[I,-I(P,)lH(Pi)].

LEMMA I. For each i (i = 1,2, 3,4), 11', has the following properties.
(i) 11', is infinitely differentiable inside Q; (ii) w,(P,) = 1: (iii) 11', = 0 on
P,-rlPH2 and P,-2P,-1 (the two sides of Q opposite the rertex P,); (iv) 11', varies
linearly along P,P,+! and P,-IP,. (the two sides ofQ adjacent to the rertex P,);
(v) 11', > 0 at all points inside Q,

These properties have been proved by Wachspress in Ref. [I].
The following lemma expresses two properties of the set {w,: i = 1, 2, 3, 4].

LEMMA 2. Thefour functions Wi, which make up the set {w,: i = 1,2,3, 4},
satisfy the following relations. (i) 11'1 + 11'2 + 11'3 + 11'4 = I; (ii) 11'111'3/11'211'4 =
I SP2 I I SP4 ill SP1 i ; SP3 I, where ISp,! denotes the (undirected) distance
from S to P, .

Proof (i) This property has been proved by Wachspress in Ref. [I].
(ii) To prove the nonlinear redundancy relation, we observe that, from the
definition of 11', , we have

11'111'3 m(P1) m(P3) 11(P2) 12(P4) 13(P4) 14(P2)
11'211'4 m(P4 ) m(P2) h(P3) 12(P3) 13(P1) 14(P1) .

Since m(P1) is proportional to the distance from PI to the line m = 0, and
m(P4 ) is proportional to the distance from P4 to the line m = 0, with the
same proportionality constant, the ratio m(P1)lm(P4 ) is equal to the ratio
I TPI III TP4 I, where 1TPI I and I TP4 I are the distances from T to PI and
T to P4 , respectively. The other ratios in the expression for 11'111'3111'211'4 above
can be replaced in a similar way. The result is

li'1 11':1

li':l11'4

The next lemma is a more complete statement of Lemma I, property (iv).

LEMMA 3. For each i (i = 1, 2, 3, 4), 11', caries linearly along any line
through either of the exterior diagonal points Sand T.
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T

FIG. 2. The point P on the line I = 0 through the external diagonal point S.

Proof Consider any line 1 = 0 through S (see Fig. 2). For a point P on
this line we have

Since 14(P) and m(P) are proportional to the perpendicular distances from P
to the lines 14 = 0 and m = 0, respectively, with different, but constant,
proportionality constants, the ratio liP)/m(P) is, apart from a constant
factor, equal to the ratio sin ex/sin y, which is independent of P. Hence, the
ratio 14(P)/m(P) does not vary along the line 1= 0; consequently, it can be
replaced by its value. for example, at S. Thus, along any line through S we
have

In the same way we show that

W
2

= m(P2) 14(S) 11
11(P2) liP2 ) m(S) ,

W
3

= m(P3) IlS) 11
12(P3 ) II(P:l ) m(S) .

lI'4 = m(P4 ) '2(S) I
13(P4 ) 12(P4 ) m(S) 3'

A similar argument is used for any line through T.
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We now derive an explicit representation for the function Wi, using a
more or less natural coordinate system in Q.

First, we introduce the normalized barycentric or areal coordinates
al , (2 , (3) relative to the reference triangle P3ST. The ('S are linear functions
of x and y; the coefficients depend on the coordinates of the vertices P 3 ,

S, and T. In terms of the areal coordinates we define the new coordinates
sand f,

(1)

Thus, the line through T(O, 0, 1) and an arbitrary point P( (1 ' (2 ' (3) inter­
sects the side P 3S at the point with areal coordinates (1 - s, s, 0). Similarly,
the line through S(O, 1,0) and P intersects the side P3T at the point with
areal coordinates (1 - f, 0, f). In other words, s increases along P3P4 from
the value °at P3 to a value a, a < 1, at P4 , and f increases along P3P2 from
the value °at P3 to a value T, T < 1, at P2 • The quadrilateral Q in the (x, y)­
plane is thus mapped onto the rectangle Q = {(S, f): °~ s z';; a, °~ f ,:;; T}
in the (s, f)-plane.

The transformation which is inverse to the transformation (I) is easily
found by means of identity (1 + (2 + (3 = L together with Eq. (1),

r _ (1 - s)(1 - t)
';,1 - 1 - sf '

r _ ~I - t)
';,2 - I - sf '

r _~ f( I - s)
';,3 - I - sf (2)

In terms of the areal coordinates aI, (2' (3) or the (s, f)-coordinates, the
equations of the four sides of Q and of the line through Sand T, are

P4PI : /1 ~ a(I - (l - a) (2 :=' (a - s)(1 - f)/(1 - sf) = 0,

PIP2: /2 ~ T(I - (1 - T) (3 == (l - S)(T - f)/(I - Sf) = 0.

P2P3: /3 = (2 = s(1 - f)/(1 - Sf) = 0,

P3P4: /4 ~ (3 ~ f(l - s)/(1 - sf) = 0,

ST: m == (1 = (1 - s)(1 - f)/(1 - Sf) = 0.

The (s, f)-coordinates of the vertices of Q are

P 3 : (0,0),

From these data and the definition of the coordinate functions w, we obtain
the representations

WI = wI(s, f) = [(1 - aT)/aTHsf/(1 - st)], (3a)

W2 c= w2(s, f) = (l/aT)[f(a - s)/(1 - sf)], (3b)

W3 ~ w3(s, f) = (1/aT)[(a - S)(T - f)/(I - Sf)], (3c)

w4 ~ wis, f) = (l/aT)[s(T - f)/(I - sf)). (3d)
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In the (s, f)-coordinate system, the nonlinear relationship which was
established in Lemma 2(ii), becomes

(4)

Finally, we give the representation of the areal coordinate (~1 , ~2 , ~a) in
terms of the coordinate functions Wi,

~1 = [(1 - a)(1 - T)/(1 - aT)] »\ + (1 - T) W2 + Wa + (1 - a) W4 ' (5a)
~2 = [a(1 - T)/(1 - aT)] WI + aw4 , (5b)
~a = [T(1 - a)/(1 - aT)] WI -1- TW 2 • (5c)

Thus, the areal coordinates are homogeneous linear functions of the rational
coordinates.

III. THE SPACES BBn(Q)

Wachspress has indicated how the rational coordinate functions w, can
be utilized for the purpose of approximating functions defined over a general
quadrilateral Q by collocation at points on the boundary of Q. Here, we
take a different approach and study the approximating properties of the class
of all real homogeneous polynomials in the variables WI' W2 , Wa , and W4 •

THEOREM I. For any com'ex quadrilateral Q, the class of all real, homog­
eneous polynomials in the rational coordinates (WI, W2 , Wa , w4 ) is dense in
the space of real continuous functions on Q.

Proof On the basis of Lemma 3 it is easy to show that Wi(P) =I Wi(P')
for at least one index i, whenever P and P' are two distinct points inside Q.
The theorem is then an immediate consequence of the Stone approximation
theorem (see Ref. [3, Chap. 1, Section 4]).

Let P4n = P4n (Q) denote the linear space of all real homogeneous poly­
nomials of degree n (n = 0, 1, ... ) in the variables WI' W2 , Wa , »'4'

THEOREM 2. P4n is a finite-dimensional subspace of the space of all real
continuous functions on Q; its dimension is (n + 1)2.

Proof Because of Lemma 2(i), we can map the coordinate set {w,: i =
1,2,3, 4} onto another set {ePi: i = 1,2,3, 4} which contains the unit element,

<PI = WI + W2 + It'a + W4 ,

eP2 = (I - st)I/2 ( I :1aT + w4),

ePa = (1 - st)1/2 ( 1 ':1 aT + w2),

,/. WI
't'4 = I - aT '
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with the inverse mapping given by

WI = (1 - aT) 4>4 '
W2 = [4>3/(1 - st)1/2] - 4>4'

W3 = 4>1 - (1 !;t)1/2 (I !;t)1/2 + (l + aT) 4>4'

W 4 = [4>2/0 - st )1/2] - 4>4 .

7

The mapping is nonsingular:

0(4)1,4>2,4>3' 4>4)10(w1 , W2' W3 , w4) = (l - st)/(l - aT),

which is nonzero in Q. In terms of the variables sand t, the new coordinates
have the representation

4>1 = 1,

4>2 = sla(l - st )1/2,

4>3 = tlT(l - st)1/2,

4>4 = stlaT(l - st),

from which we immediately conclude that the 4>'s satisfy the nonlinear
relation

4>4 = 4>24>3'

Now, consider an arbitrary elementfE IJ8 n • It has the form

where the sum extends over all combinations iX = (iX1 , iX2 , iX3' iX4), such that
I iX I = iX1 + iX2+ iX3 + iX4 = n; the real coefficients a~ are independent of
the w's. Since each Wi is a homogeneous linear function of 4>1 , 4>2/(1 - st)1/2,
4>3!(l - st)1/2, and 4>4' we can rewrite f in the form

f = L b84>~14>~24>~3¢~4/[(l - st )1/2]82+83,
(8)

where, now, the sum extends over all combinations f3 = (f31 , f32 , f33 , f34)
with [ f3 [ = n. Ifwe express the ¢'s in terms of the variables sand t, we obtain

f = L bis/a)82+84(t/Tt3+84/(I - st)82+8J+84.
(8)

Again, the sum extends over all combinations f3 = (f31 , f32 , f33 ,(34) with
I f3 I = n. The latter expression can, in turn, be rewritten in the form

f = 1 n L b8(s/at2+84(t/T)8J+84(l - stt1,
(I - st) (8)
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or, after a rearrangement of terms,

Since the set of monomials {Sit"': 1= 0,... , n; m = 0, ... , n} is linearly inde­
pendent over the domain Q, it follows that the dimension of the linear space
f.H n is the same as the dimension of Sp{Slt m : 1= 0,00" n; m = 0'00" n}. The
latter has dimension (n + I )2, so

The finite-dimensional subspaces f.H n provide a convenient mechanism
for approximating functions in a finite element procedure. Generally, the
relevant question in this connection is, What classes of polynomials in the
variables x and yare contained in the spaces /Ja n ?

Let f!lJn = /!Jln(Q) denote the linear space of all functions which are defined
on Q and are represented there by a real polynomial of degree less than or
equal to n (n = 0, I '00') in the variables x and y.

for n = 0,1,00..

Proof Any element of f!lJn can be represented on Qeither as a polynomial
of degree at most n in the variables x and y, or as a homogeneous polynomial
of degree n in the areal coordinates '1 ,'2 ' 'a .Since each 'i is a homogeneous
linear function of the rational coordinates (WI' W2 ' Wa , W4) (see Eq. (5) of
the previous section), it follows that any element of f!lJn can also be represented
as a homogeneous polynomial of degree n in the variables (WI' W2 ' Wa , w4 ).

That is, any element of f!lJ n corresponds uniquely to an element of f.Hn •

Hence, f!lJ n C f.H n •

It is worthwhile to investigate what happens to the space Bdn(Q), when,
on the one hand, Q degenerates into a triangle, and, on the other hand, Q is
a rectangle.

For the sake of definiteness, let us assume that the distance from the
vertex PI to the diagonal P2P4 (see Fig. 1) is decreased continuously. The
external diagonal points Sand T then move along the lines 14 = °and 12 = °
toward the vertices P4 and P2 , respectively. In the limit, as Q coincides with
the triangle PaP4P2 , the reference triangle PaST is the same as this triangle,
so the areal coordinates ('1' '2 , 'a) become the areal coordinates relative
to Q itself. Furthermore, in the (s, t)-plane, the image Qof Q coincides with
the unit square, Q= {(s, t): °,,:;;; s ,,:;;; I, °,,:;;; t ~ I}. From Eq. (3) we see
that the coordinate function WI tends to zero, while W2 , Wa, and W4 tend to
t{l- s)/{l - st) = 'a, (I - s)(I - t)/(I - st) = '1' and s{l- t)/(I - st) = '2'
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respectively. Hence, as Q degenerates into a triangle, the space dBn(Q)
becomes the space of all real homogeneous polynomials of degree n in the
areal coordinates relative to Q.

T

~--------4I>------_-.::::::o.. s

FIG. 3. The quadrilateral Q with right angle at P3 .

On the other hand, consider the quadrilateral Q of Fig. 3. The (x, y)­
coordinates of its vertices are: P1(aa, ab), P2(0, b), P3(0, 0), P4(a,0), with a

constant, °< a < 1. As a ---+ I, PI moves up along the line y = (bla)x,
and in the limit, a = I, Q becomes the rectangle Q = {(x, y); °~ x ~ a,°~ y ~ b}. One readily verifies that the (x, y)-coordinates of the external
diagonal points Sand Tare (aalO - a), 0) and (0, abl(1 - a», respectively.
Relative to the triangle P3ST, the areal coordinates are

I-ax I-ay'1 = I - -- - - -- - ,
0: a a b

so

with

with

I~Ci
O"Ss~a=--,

(Y.

l-rx
O~t~':;T=---.

- 'x

Now, as a ---+ I, the image Qof Q in the (s, t)-plane shrinks to a single point
at the origin. From Eq. (3) we see that in the limit Ci = 1,
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Hence, as Q becomes a rectangle in the plane, the space ~n(Q) becomes the
space of all real polynomials of degree at most n in the variables x and y,
i.e., 9.1nCQ) = .OJ!n(Q).

From these two limiting cases we conclude that the space ~n(Q) represents
a natural generalization to the case of an arbitrary quadrilateral Q in the
plane of, on the one hand, the space of all real homogeneous polynomials
of degree n in the areal coordinates defined over a triangle, and, on the other
hand, the tensor product space of all real polynomials of degree n in the
Cartesian coordinates defined over a rectangle.

IV. CONSTRUCTION OF A MONOMIAL BASIS FOR [!$n(Q)

In this section we construct a basis for the finite-dimensional subspace
[!$n = (J1Jn(Q), which consists of monomials of degree n in the variables WI ,
W2 , ws , and W4 . The construction proceeds by induction on n.

1. n = O. A monomial basis for (J1Jo is, obviously,

with w~O) = 1.

2. n = I. A monomial basis for :141 is

with W (I) = u·
1 ""1'

3. n = 2, 3,.... Assume that we have found a monomial basis for (J1Jn-2'
Let this basis be denoted by Q n-2 ,

Q - { (n-2). . __ I (- 1)21.n-2 -- W, . 1 - , ... , n J.

Now, form the set of monomials

There are a total of 4n elements in the set Zn , and each element is a monomial
of degree n. The set is linearly independent on the boundary of Q. Let the
elements in the set be linearly ordered and denoted by z\nl, so that

Z - { (n) • . - I 4 )n - 2 1 • 1 - , ... ~ nJo

Then, define

w: n) = z:n),

(n) _ , , (n-2)
W t - li 2l1-..tW I-4n ,

i = L. ... 4n,

i = 4n + 1,... , (n + 1)2.



The set

RATIONAL COORDINATES OVER QUADRILATERALS

Q - { (n).· _ 1 (+ 1)2.n - Wi _ I - , ... , n j

11

thus consists of monomials of degree n. If we can show that this set is linearly
independent, it follows that Q n is a monomial basis for;]On .

Suppose there exists a set of constants {ex,: i = 1, ... , (n + 1)2} such that

(n+l)2

L ex,w~n) = 0
1=1

In Q. (6)

Since W 2W 4 = 0 on the boundary of Q, all w~n) with i > 4n vanish identically
on the boundary of Q, and Eq. (6) implies

on the boundary of Q. But, since the set Zn is linearly independent on the
boundary of Q, the latter relation in turn implies that all ex, with i ~ 4n are
zero. Hence, the relation (6) above reduces to

(n+l)2

L ex,w~n) = 0
,~4nTl

III Q,

1=1

III Q. (7)

By continuity, this same relation then holds for all of Q, including the
boundary. But, since Qn-2 is, by assumption, a monomial basis for :Ja n-2 ,

Eq. (7) can be satisfied only if all coefficients ex, with i > 4n are zero. In
other words, all the coefficients in Eq. (6) vanish; i.e., the set Q n is linearly
independent and, therefore, forms a monomial basis for :!Jn •

V. LAGRANGE INTERPOLATION OVER A QUADRILATERAL MESH

The rational coordinate functions may be used conveniently for the
numerical solution of boundary value problems by finite element methods.
In this section, we indicate how one can construct a polynomial basis in the
rational coordinates for Lagrange interpolation over an arbitrary quadri-
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lateral. We assume that this quadrilateral is part of a network of quadri­
laterals, and that the interpolating polynomial function must be matched
across interelement boundaries at specified sets of points, to meet the global
continuity requirements appropriate to the particular problem under
investigation.

Consider an arbitrary quadrilateral, Q, with its associated rational coordi­
nate functions (WI' W2 , W3 , w4 ). For a fixed positive integer n, define the
linear space I:!8 n = ,:?In(Q) as before, and let Q n = {w;n>: i = I, ... , (n + 1)2)
be its monomial basis. We restrict our discussion to nondeficient elements,
so that the number of nodes associated with Q is equal to the dimension of
fJ8n , viz (n + 1)2. These nodes are distributed over Q in the following way.

T

s

FIG. 4. A grid for Lagrange interpolation over the quadrilateral PI P.P3P•.

Four vertex nodes {P,: i = 1,2,3, 4}, 4(n - I) side nodes {Pi: i = 5, ... , 4n},
and (n - 1)2 interior nodes {P,: i = 4n + I, ... , (n + 1)2} (see Fig. 4). The
side nodes may, but need not, evenly subdivide the sides of Q. The interior
nodes may be taken, for example, at the lattice of (n - 1)2 points Xs n X 1' ,

where Xs is a pencil of n - 1 lines through S,

X s = IW
2

= _1_,,_ W3: k = 1,... , n -11,
I T - lk \

with 0 < II < 12 ... < In-I < T,



RATIONAL COORDINATES OVER QUADRILATERALS

and XT is a pencil of n - 1 lines through T,

X -l'" - _5_1.'- '" • k - 1 n - 11T - "4 - "3' - , ... , \.
a - 51c

with 0 < 51 < 52 ••. < 5//~1 < a.

13

Notice that the side nodes generally do not line up with the interior nodes.
Now, any element p EO!J1// has a unique representation,

(//+1)2
'\' (//)

P = 1.... ex,w, .
l=l

(8)

It is our objective to represent p in terms of its nodal values {PJ = p(PJ:
j = J, ... , (n + 1)2}; thus

(9)

To this end, we evaluate Eg. (8) at the nodes {PJ:j = 1, ... , (n + 1)2}. The
result is a system oflinear equations for the coefficients {exi: i = 1,... , (n + 1)2},

(//+1)2
'\' (//)
1.... ex,w" = PJ •
i=l

j ~~ I, ... , (n + J)2,

where wi;') is the value of wi") at p) . Since each w;n) with i > 4n vanishes
identically on the boundary of Q, the coefficient matrix Q = (wi7» can be
partitioned,

with Q 11 a 4n x 4n matrix and Q 22 a (n - 1)2 >~ (n - 1)2 matrix. Both Q 11

and Q 22 are nonsingular, so Q-1 exists and is given by

Thus, if we denote the (i,j)-element of Q-1 by w~\ we have

(1/+1)2

ex, = L Wi1PJ'
J~l

i=1,.... (n+l)2.

Substitution of this result in Eq. (8) gives

p=
(1/+1)2 (1/+1)'

L L
i~l J~l
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This is a representation of the type (9), with

.i = 1,... , (n + 1)2.

The set of polynomials

<P n = {4>Jn):j = 1,... , (n + 1)2}

forms a canonical basis for Wn for Lagrange interpolation over the set of
nodes {Pj:j = I, ... , (n + 1)2), i.e.,

for i, j = 1, ... , (n + 1)2.

VI. ApPROXIMATION IN SOBOLEV SPACES

The set of interpolatory polynomials <Pn obtained in the previous section
can be used to define an approximation procedure for functions on Q.
Approximation of a function u over Q is achieved through a projection
operator JIn into the finite-dimensional subspace 8Il'n(Q),

(n+1)2

JI . A JI ",/.(n)
n . U ---+ U = nU = f..., U,,!,; ,

,=1
U; = U(P,).

We observe that the set gJn of polynomials of degree at most n in the (x, y)­
variables is invariant under JIn ,

for all U E fJjJ n = .9nCQ).

For approximation of functions in Sobolev spaces, we can apply a result
of Ciarlet and Raviart [4], to obtain estimates for the Sobolev norm of the
error U - Ilnu. These estimates involve the following two geometric param­
eters related to Q,

h = diameter of Q,

p = sup{diameter of the inscribed circles in Q}.

We recall that Wl,P(Q), for any integer l, l ~ 1, and any p, 1 :s;; p :s;; 00, is
the Sobolev space of all (equivalence classes of) real-valued functions which,
together with their generalized partial derivatives of order :S;;l, belong to
LP(Q). The norm 1IIIl,p and seminorm I Il,p in WI,p(Q) are defined by

jjlllll,p = cto II DkU II~rp,

ill :I,p = II Diu lip,
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respectively, for 1 ~ p < 00, and

II U 111.00 = max{11 Dku 1100: k = 0, ..., I},

I U 11.00 = II DiU 1100 ,

respectively, for p = 00.

15

THEOREM 4. Let p be given, 1 ~ P ~ 00; let n ;:? 0 be a fixed integer, and
let I be an integer with 0 ~ I ~ n + 1. For any UE Wn+l.P(Q) (and for h
sufficiently small ifp < 00), the error U - IInu satisfies the estimate

with C a constant, which is independent of u.

The theorem is a direct consequence of Ref. [4], Theorem 5.
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